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Abstract

We consider compactness properties for strong logics in terms of strong Henkin models and give

characterisations of supercompact cardinals, C(n)-extendible cardinals, and Vopěnka’s Principle by

these properties. Moreover, we give a characterisation of superstrong cardinals in terms of compactness

properties using the previously considered weak Henkin models.

1 Introduction

The well-known large cardinal notions of weakly compact and strongly compact cardinals are characterised

in terms of compactness properties for infinitary languages. Other large cardinal notions can be characterised

in terms of compactness properties for other strong languages.

In [8], Boney characterised strong cardinals by a compactness principle providing the existence of Henkin

models of second-order theories. In [9], the authors introduced a notion we will call in this paper weak Henkin

models of a general logic (cf. Definition 2) and used it to characterise Woodin cardinals in a similar way.

Being a weak Henkin model of a theory T is an in some sense unnatural notion: it includes reference to a

model of set theory that includes a structure the model believes satisfies each sentence of T ; but it does not

need to contain T itself and so it cannot express this fact. This leads naturally to a strengthening of weak

Henkin models that we will call strong Henkin models (cf. Definition 4).

In §§ 3 & 4, we will characterise the notions of supercompact cardinals and C(n)-extendible cardinals in terms

of the strong Henkin model version of compactness, respectively (Theorems 5 & 10). The latter characterisation

allows us to characterise Vopěnka’s Principle (Corollary 12). In §5, we use a compactness principle about weak

Henkin models to characterise superstrong cardinals (Theorem 15).
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2 Preliminaries

2.1 Large cardinals

We will give the definitions of the relevant large cardinal notions and some relevant background.

A cardinal κ is λ-strong if there is an elementary embedding j : V → M such that crit(j) = κ, j(κ) > λ

and Vλ ⊆ M . It is strong if it is λ strong for every λ > κ.

A cardinal κ is Πn-strong if for every class A which is Πn-definable without parameters and every λ there is

an elementary embedding j : V → M , crit(j) = κ, Vλ ⊆ M and A ∩ Vλ ⊆ AM (cf. [5]).

A cardinal κ is superstrong with target λ if there is an elementary embedding j : V → M such that

crit(j) = κ, j(κ) = λ and Vj(κ) ⊆ M .

A cardinal κ is λ-strongly compact if there is an elementary embedding j : V → M such that crit(j) = κ

and such that there is d ∈ M with M |= |d| < j(κ) and j“λ ⊆ M . It is strongly compact if it is λ-strongly

compact for every λ > κ.

A cardinal κ is λ-supercompact if there is an elementary embedding j : V → M such that crit(j) = κ,

j(κ) > λ and Mλ ⊆ M . It is supercompact if it is λ-supercompact for every λ > κ. That κ is λ-supercompact

is equivalent to the existence of a fine, normal, and κ-complete ultrafilter on Pκλ (cf., e.g., [12, § 20]).
We write C(n) to denote the club class of ordinals α such that Vα ≺Σn

V , i.e., such that Vα is an elementary

substructure of the universe with respect to the Σn-formulas. Then, a cardinal κ is called C(n)-extendible if for

every α > κ there is an elementary embedding j : Vα → Vβ such that j(κ) > α and j(κ) ∈ C(n) (cf. [3]). Bagaria

showed that extendible cardinals (cf. [13, p. 311]) are precisely the C(1)-extendible cardinals and that with

growing n, the existence of a C(n)-extendible cardinal gains consistency strength. These cardinal notions stratify

the large cardinal principle known as Vopěnka’s Principle (VP; cf. [13, pp. 335–339]) in the following sense.

Theorem 1 (Bagaria; [3, Corollary 4.15]). VP holds if and only if for every n, there is a C(n)-extendible

cardinal.

2.2 Abstract model theory

We make some remarks about the notions from abstract model theory we will use. As in first-order model

theory, a vocabulary τ consists of finitary relation, function and constant symbols. Moreover, we will work

with many sorted vocabularies, i.e., τ further contains a set of sort symbols. A τ -structure A has for every

sort symbol s a domain As and furthermore interpretations of the relation, function, and constant symbols. A

bijective map f : τ → σ is called a renaming iff it restricts to respective bijections between the sets of sort,

relation, function and constant symbols, all while respecting their respective arities. Notice that if A is a

τ -structure and f : τ → σ a renaming, then f induces a τ -structure f(A) on the domain of A.

Though we will mostly work with concretely given logics, some of our results contain statements that make

reference to all logics simultaneously. In this case we refer to common definitions of logics given in abstract

model theory (cf., e.g., [7, Chapter II]). We point out their in our context most important features. If τ is a

vocabulary and L a logic, we write L[τ ] for the collection of L-sentences over τ . We assume that L[τ ] is always a
set (as opposed to a proper class). If T ⊆ L[τ ] we call T an L-theory. A logic further has a satisfaction relation

|=L, possibly holding between τ -structures A and some φ ∈ L[τ ]. Importantly, |=L is defined by some formula in

the language of set theory, possibly with parameters. If A |=L φ for all φ ∈ T ⊆ L[τ ], then L is a model of the L-
theory T . We further assume that if f : τ → σ is a renaming, then f induces a bijection, also called a renaming,
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f : L[τ ] → L[σ] such that for any τ -structure A: A |=L φ iff f(A) |=L f(φ). If T ⊆ L[τ ] is an L-theory, we call

f“T a copy of T . We say that T is <κ-satisfiable for some cardinal κ, if every T0 ∈ PκT has a model.

The concrete logics we will consider are second-order logic L2, as well as infinitary versions of second order

logic L2
κλ for regular cardinals κ ≥ λ, which allows for conjunctions and disjunctions over sets of formulas of

size < κ and quantification over strings of (first- or second-order) variables of length < λ. Recall that there is a

sentence Φ of second-order logic, known as Magidor’s Φ, such that (M,E) |= Φ iff M ∼= Vα for some ordinal α

(cf. [14]; the original construction requires that α is a limit ordinal; the general case is an easy adaptation). For

later purposes, fix a large finite fragment ZFC∗ of ZFC, which ZFC proves to be satisfied in the Vα for α any

limit ordinal and which is, in particular, large enough to prove that the universe is the union of the rank-initial

segments Vα and that Φ is true in precisely those structures isomorphic to some Vα.

We fill further consider sort logics, an expansion of second-order logic introduced by Väänänen (cf. [18, 19]

for details). The main feature of sort logics are sort quantifiers written as ∃̃ and ∀̃. A formula ∃̃Xφ(X) involving

a sort quantifier over some relation variable X of arity n is true in a structure A iff A can be expanded by

an additional domain B such that there is a subset Y ⊆ Bn such that the expanded structure satisfies the

formula φ(B), i.e., the sort quantifiers search outside the structure itself, ranging over the whole universe V ,

for sets that satisfy some relation described by φ(X). Because we would run into definability of truth issues

otherwise, sort logics are graded into Ls,n by the natural numbers n. A sentence of Ls,n is only allowed to

include n-alternations of sort quantifiers ∃̃ and ∀̃. We will in particular consider infinitary sort logics Ls,n
κω which

expand Ls,n by conjunctions and disjunctions of size < κ. We require that the syntax of vocabularies, L2
κλ

and, Ls,n
κω is coded in some reasonable way. More precisely, if j : V → M is some elementary embedding with

crit(j) ≥ κ, then we require that for any vocabuly τ , j restricts to a renaming j : τ → j“τ , and if T ⊆ L2
κλ,

then j“T⊆ L2
κλ is a copy of T , and analogously for Ls,n

κω .

2.3 Weak and strong Henkin models

Recall the Henkin semantics for second-order logic L2. If φ ∈ L2[τ ] is a second-order sentence, some pair

(A, P ) consisting of a τ -structure A and P ⊆ P(A) is a (classical) Henkin model of φ, if A is seen to satisfy φ

if we let the second-order quantifiers appearing in φ run over P (as opposed to the full power set of A). Notice

that if M is some transitive set such that A, φ ∈ M , and further M |= “A |=L2 φ”, then (A,PM (A)) is a

Henkin model of φ, i.e., being a Henkin model is similar to evaluating the truth of “A |=L2 φ” in some model

of set theory that does not have A’s full power set.

This served as motivation in [9] to generalise the notion of Henkin model to general logics in the following

way. We present a simplified version of the notion considered there.

Definition 2. Let L be a logic, τ a vocabulary, T ⊆ L[τ ], M a transitive set and A ∈ M . Then the pair

(M,A) is a called a weak L-Henkin model of T iff there is a copy T ∗ of T such that for any φ ∈ T ∗, we have

(M,∈) |= “A |=L φ”.

The main difference to the definition given in [9] is, that there the authors demand that the transitive set

appearing in their corresponding definition of a Henkin model satisfies (some fragment of) ZFC. In practice,

we also want weak Henkin models to satisfy some amount of ZFC. However, it depends on the context which

fragment of ZFC is the appropriate one. We therefore decided to outsource fixing the “right” fragment of ZFC

to the statement of our theorems. Further (minor) differences are that we explicitly work with models of copies

of theories, and that we demand the existence of a single structure A ∈ M such that all φ ∈ T ∗ are satisfied by

A when computing satisfaction in M , while they work with a coherent system of structures Aφ, all defined on
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the same set A, with M |= “Aφ |=L φ”. Note however that we do not demand that A is a τ∗-structure for τ∗ a

renamed version of τ . Instead, A may also be a σ-structure for some σ ⊇ τ∗.

We give the notion the qualification “weak” Henkin model to distinguish it from the stronger notion we will

introduce below. In [9, Theorem 3.6], weak Henkin models were used to give a compactness characterisation of

Woodin cardinals. Boney in [8, Theorem 4.7] used classical Henkin models to give a characterisation of strong

cardinals. Referring to weak Henkin models, his result can be stated as follows:

Theorem 3 (Boney; [8, Theorem 4.7]). The following are equivalent for a cardinal κ:

(1) κ is strong.

(2) For any λ > κ and any theory T ⊆ L2
κω that can be written as an increasing union T =

⋃
α∈κ Tα of

theories Tα which each have a model of size ≥ κ, there is a weak Henkin model (M,A) of T such that

Vλ ⊆ M , M |= ZFC∗ and |A| ≥ λ.

The notion of weak Henkin model (M,A) of a theory T has some unexpected features. The set M does not

need to contain T , but it is from the outside that we see that M |= “A |= φ” for every φ in (a copy of) T . If

we require that M contains T , we get a stronger notion.

Definition 4. Let L be a logic, τ a vocabulary, T ⊆ L[τ ], M a transitive set such that T ∈ M , and A ∈ M .

Then the pair (M,A) is called a strong L-Henkin model of T iff (M,∈) |=“A |=L T”.1

This notion will be used in §§ 3 and 4 to characterise supercompact and C(n)-extendible cardinals, respectively.

3 Supercompact cardinals

For our characterisation, recall that Lκω can define all ordinals < κ.

Theorem 5. The following are equivalent for a cardinal κ:

(1) κ is supercompact.

(2) For every λ, if T ⊆ L2 ∪ Lκω is a <κ-satisfiable theory, then there is a strong L2 ∪ Lκω-Henkin model

(M,A) of T such that M |= ZFC∗ and Vλ ⊆ M .

(3) For every λ, if T ⊆ L2
κω is a <κ-satisfiable theory, then there is a strong L2

κω-Henkin model (M,A) of T

such that M |= ZFC∗ and Vλ ⊆ M .

(4) For every λ, if T ⊆ L2
κκ is a <κ-satisfiable theory, then there is a strong L2

κκ-Henkin model (M,A) of T

such that M |= ZFC∗ and Vλ ⊆ M and Mλ ⊆ M .

Proof. Clearly (4) implies (3), and (3) implies (2). We first show that (1) implies (4). So let T be a <κ-satisfiable

L2
κκ-theory. Take a ℶ-fixed point λ of cofinality at least κ large enough such that T ∈ Vλ and Vλ has a model

for every < κ-sized subset of T . By supercompactness, let j : V → M be elementary with crit(j) = κ, j(κ) > λ

and Mλ ⊆ M . Note that the restriction i = j ↾ Vλ : Vλ → V M
j(λ) is an elementary embedding, and this implies

V M
j(λ) |= ZFC∗. Because Vλ believes that T is <κ-satisfiable, by elementarity V M

j(λ) |=“i(T ) is < i(κ) satisfiable”.

By closure of M , we get that i“T ∈ M and thus that i“T ∈ V M
j(λ). Further |i“T |V

M
j(λ) = |i“T |M < λ < i(κ).

Thus, V M
j(λ) believes that there is a model B |= i“T . Because crit(i) = κ, with the renaming i : τ → i“τ we

have that i“T is a copy of T . Notice that by closure under λ-sequences, M and hence V M
j(λ) knows about the

renamings i : τ → i“τ and i : T → i“T . We can therefore also rename B in V M
j(λ) to a τ -structure A, which

1 We would like to thank the anonymous referee for their questions about an earlier version of this article, which lead us to
formulate this definition in its current form.
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V M
j(λ) believes to satisfy T . Notice that Vλ ⊆ V M

j(λ). Further, cof(j(λ))
M ≥ j(κ) > λ > κ. By closure of M , this

implies that V M
j(λ) is λ-closed. Summarising, (V M

j(λ),A) is a strong Henkin model as desired.

And now assume (2) and let us show (1). Take a cardinal λ > κ of cof(λ) ≥ κ. Consider the theory

T = ElDiagL2∪Lκω
(Vλ+1,∈) ∪ {ci ∈ d ∧ |d| < cκ : i < λ},

where d is a new constant and the ci are the constants used in the elementary diagram. If T0 ⊆ T is of size < κ,

there is X ⊆ λ such that |X| < κ and the sentence “ci ∈ d∧ |d| < cκ” is contained in T0 iff i ∈ X. Then letting

d be interpreted by X, we get that (Vλ+1,∈, d) witnesses that T0 is satisfiable. So by (2), we get a transitive

model M of ZFC∗ such that Vα ⊆ M for some large α > λ and A ∈ M such that M |=“A |= T”. We may take

α large enough such that T ∈ Vα. Notice that T is a theory in a language τ ∈ {∈, cx, d : x ∈ Vλ+1}. Because
with T , also τ ∈ Vα, and thus also the structure N = (Vλ+1,∈, cNx )x∈Vλ+1

in which every cx is interpreted by

x itself, and which witnesses that (Vλ+1,∈) satisfies its own elementary diagram, is in Vα and hence in M .

Because first-order satisfaction is absolute between M and V , M understands that T contains the elementary

diagram of (Vλ+1,∈) and therefore believes that there is an elementary embedding j : Vλ+1 → A. Again, by

absoluteness of first-order satisfaction, this is really an elementary embedding. Because M |= ZFC∗ and T

contains Magidor’s Φ, M believes A to be some rank-initial segment and so we have to have A = V M
β+1 for

some β. Because cAi ∈ dA for every i < λ, we get that j(κ) > |d|A ≥ λ. In particular, crit(j) ≤ κ. Because

also Lκω-satisfaction is absolute for transitive models and Lκω can define all ordinals < κ, those have to be

fixed by j. Thus crit(j) = κ. Notice that j“λ is definable from j and λ and so j“λ ∈ M and therefore in V M
β+1.

Summarising, we have an elementary embedding j : Vλ+1 → V M
β+1 with crit(j) = κ, j(κ) > λ and j“λ ∈ V M

β+1.

We can therefore let, for X ⊆ Pκλ:

X ∈ U iff j“λ ∈ j(X).

It is standard to check that this defines a fine, normal and κ-complete ultrafilter U over Pκλ. To check

normality, for example, if f is a regressive function on Pκλ and so {s ∈ Pκλ : f(s) ∈ s} ∈ U . Then j“λ ∈
{s ∈ Pj(κ)j(λ) : j(f)(s) ∈ s} and hence j(f)(j“λ) = j(γ) for some γ < λ. Therefore {s ∈ Pκλ : f(s) = γ} ∈ U .

Hence κ is λ-supercompact for arbitrarily large λ.

Note that in (3), M is closed under λ-sequences. In this context, the relevant closure is (the implied) closure

under κ-sequences, as this makes M correct about Lκκ-satisfaction.

We would like to make some remarks about related results. An argument by Dimopoulos shows that if κ is

strong and strongly compact then κ is also jointly strong and strongly compact, i.e., for every λ there is an

embedding simultaneously witnessing κ being λ-strong and λ-strongly compact (cf. [10, Proposition 2.3]). And

Apter and Hamkins show that it is consistent to have a cardinal which is both strong and strongly compact,

but not supercompact (cf. [2, Theorem 1.2]). Boney points out, that in his framework considering classical

Henkin models for second-order logic, a compactness principle using full compactness instead of the chain

compactness property from Theorem 3 characterises cardinals which are jointly strong and strongly compact (cf.

[8, p. 159]), which by Dimopoulos’ result comes down to κ being strong and strongly compact. This translates

to the terminology of weak Henkin models, i.e., considering weak Henkin models instead of strong ones in

Theorem 5 characterises that κ is strong and strongly compact. By the result of Apter and Hamkins the latter

is not equivalent to supercompactness of κ. In particular, this shows that usage of strong Henkin models is

necessary for the result of Theorem 5 in the following way.

Theorem 6. It is consistent that κ is not supercompact, but that for every λ, if T ⊆ L2
κω is a <κ-satisfiable

theory, then there is a weak L2
κω-Henkin model (M,A) of T such that M |= ZFC∗ and Vλ ⊆ M .
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4 C(n)-extendible cardinals and Vopěnka’s Principle

To provide some background, we mention that model theory of extensions of first-order logic has close

connections to VP: a cardinal κ is called the compactness number of a logic L, if it is the smallest cardinal

such that any theory T ⊆ L is satisfiable, provided all T0 ∈ PκT are satisfiable.

Theorem 7 (Makowsky; [16, Theorem 2]). VP holds if and only if every logic has a compactness number.

Our result will be the analogue for strong Henkin compactness of all logics, making use of Bagaria’s

stratification of VP in terms of C(n)-extendible cardinals (Theorem 1). In our proof, we will use a number of

results from the literature.

Theorem 8 (Bagaria & Goldberg; [6, Theorem 2.6]). The following are equivalent for every n ≥ 1 and every

cardinal κ:

(1) κ is C(n)-extendible.

(2) For every λ > κ, λ ∈ C(n+1), there is an elementary embedding j : V → M such that crit(j) = κ,

j(κ) > λ, Mλ ⊆ M and M |=“λ ∈ C(n+1)”.

(3) For every λ > κ, λ ∈ C(n+1), there is a fine, normal and κ-complete ultrafilter U on Pκλ such that

{s ∈ Pκλ : ot(s) ∈ C(n+1)} ∈ U .

We remark that this theorem of Bagaria & Goldberg shows that extendibles and C(n)-extendibles are direct

strengthenings of supercompact cardinals.

Proposition 9 (Folklore; cf., e.g., [9, Proposition 2.2]). For every n, Ls,n has a sentence Φ(n) such that

(M,E) |= Φ(n) iff (M,E) ∼= (Vα,∈) for some α ∈ C(n).

For any natural number n, let us fix a finite fragment ZFC∗
n of ZFC, expanding ZFC∗ and sufficiently large

to prove that Φ(n) axiomatizes the class of models isomorphic to some (Vα,∈) such that α ∈ C(n).

Theorem 10. The following are equivalent for every n ≥ 1 and every cardinal κ:

(1) κ is C(n)-extendible.

(2) For every λ ∈ C(n+1), if T ⊆ Ls,n+1 ∪ Lκω is a <κ-satisfiable theory, then there is a strong Ls,n+1 ∪
Lκω-Henkin model (M,A) of T such that M |= ZFC∗

n+1 and Vλ ≺Σn+1 M .

(3) For every λ ∈ C(n+1), if T ⊆ Ls,n+1
κω is a <κ-satisfiable theory, then there is a strong Ls,n+1

κω -Henkin

model (M,A) of T such that M |= ZFC∗
n+1 and Vλ ≺Σn+1

M .

Proof. The proof proceeds similar to the supercompactness case. Clearly (3) implies (2). Assume (1) and let

us show (3). Let T be <κ-satisfiable over the vocabulary τ . By the reflection theorem, take λ = ℶλ ∈ C(n+1)

such that Vλ satisfies ZFC∗
n+1 and large enough such that Vλ verifies that T is <κ-satisfiable. Take j : V → M

with crit(j) = κ, Mλ ⊆ M and M |= “λ ∈ C(n+1)”. Again i = j ↾ Vλ : Vλ → V M
j(λ) is elementary. In particular,

V M
j(λ) |= ZFC∗

n+1; further V
M
j(λ) |=“i(T ) is < i(κ) satisfiable” and so V M

j(λ) has a model B for the copy i“T . As

earlier, by closure of M , this can be renamed to a τ -structure A ∈ V M
j(λ) which V M

j(λ) believes to satisfy T .

Again, Vλ ⊆ V M
j(λ). Finally, because λ ∈ C(n+1), by elementarity of j, we have M |= j(λ) ∈ C(n+1). Thus

V M
j(λ) ≺Σn+1 M . Also by assumption M |= “λ ∈ C(n+1)” and so Vλ ≺Σn+1 M . Because Vλ ⊆ V M

j(λ), this together

implies Vλ ≺Σn+1
V M
j(λ). Summarising, (V M

j(λ),A) is a strong Henkin model as desired.

Now assume (2) and let us show (1). Let λ > κ be in C(n+1) and of cofinality cof(λ) ≥ κ. Consider

T = ElDiagLs,n+1∪Lκω
(Vλ+1,∈) ∪ {ci ∈ d ∧ |d| < cκ : i < λ}.
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Again, for < κ-sized subsets of T , we can get a model by considering Vλ+1 itself. So for some α ∈ C(n+1) much

greater than λ and such that T ∈ Vα, by assumption we get an M |= ZFC∗
n+1 such that Vα ≺Σn+1 M and

there is A ∈ M which M believes to be a model of T . As before, M has a first-order elementary embedding

j : Vλ+1 → A. By Magidor’s Φ, we have A = V M
β+1 for some β. Further, because λ ∈ C(n+1), T contains a

sentence coding that Φ(n+1) (cf. Proposition 9) holds in Vλ, i.e., in the rank initial segment cut off at the largest

ordinal λ of Vλ+1. Then M believes that this sentence holds in V M
β+1 and so that V M

β satisfies Φ(n+1). Since

M |= ZFC∗
n+1, thus M |= “β ∈ C(n+1)”. Again, our theory implies that j(κ) > λ and because j“λ is definable in

M , we have j“λ ∈ V M
β+1. Summarising, we have an elementary embedding j : Vλ+1 → V M

β+1 with j(κ) > λ and

j“λ ∈ V M
β+1. Define a fine, normal and κ-complete ultrafilter on Pκλ as usual, by letting X ∈ U iff j“λ ∈ j(X).

By Bagaria’s and Goldberg’s Theorem 8, it suffices to verify that X = {s ∈ Pκλ : ot(s) ∈ C(n+1)} ∈ U . Notice

that because λ ∈ C(n+1) and cof(λ) ≥ κ, for s ∈ Pκλ we have

Vλ+1 |= ∀s ∈ Pκλ(s ∈ X ↔ Vλ |= “ot(s) ∈ C(n+1)”).

By elementarity,

V M
β+1 |= ∀s ∈ Pj(κ)j(λ)(s ∈ j(X) ↔ V M

β |= “ot(s) ∈ C(n+1))”.

So we have to show that V M
β |= “λ = ot(j“λ) ∈ C(n+1)”. Because M |=“β ∈ C(n+1)”, this is equivalent

to M |=“λ ∈ C(n+1)”. As really α ∈ C(n+1), and α > λ ∈ C(n+1), we have Vα |= “λ ∈ C(n+1)”. Because

Vα ≺Σn+1
M by assumption, this implies M |= “λ ∈ C(n+1)”, verifying X ∈ U .

An easy adaptation of the above proof further gives:

Theorem 11. The following are equivalent for every n ≥ 1 and every cardinal κ:

(1) κ is the smallest C(n)-extendible cardinal.

(2) κ is the smallest cardinal such that for every λ ∈ C(n+1), if T ⊆ Ls,n+1 is a <κ-satisfiable theory, then

there is a strong Ls,n+1-Henkin model (M,A) of T such that M |= ZFC∗
n+1 and Vλ ≺Σn+1 M .

Because the strength of any logic is bounded by Ls,n
κω for some n and κ, and because VP is equivalent to the

existence of C(n)-extendible cardinals for any n, our results imply the following Makoswky-like characterisation

of VP:

Corollary 12. The following are equivalent:

(1) VP

(2) For any logic L and any natural number n, there is a cardinal κ such that if λ ∈ C(n) and T ⊆ L is a

<κ-satisfiable theory, then there is a strong L-Henkin model (M,A) of T such that Vλ ≺Σn
M .

We would like to state some remarks about closely related results.

Firstly, similar characterisations of VP have been obtained with other model-theoretic properties. E.g., Boney

showed that the existence of a compactness number of Ls,n is equivalent to the existence of a C(n)-extendible

cardinal (cf. [8, §4.1]). Stavi showed that VP is equivalent to the existence of Löwenheim-Skolem-Tarski

numbers for every logic (cf. [15]). Gitman and the first author showed that the existence of an upward

Löwenheim-Skolem-Tarski number of Ls,n is equivalent to the existence of a C(n)-extendible cardinal and that

VP is equivalent to the existence of upward Löwenheim-Skolem-Tarski numbers for every logic (cf. [11]).

Also, there is a weakening of Vopěnka’s Principle with a category-theoretic motivation due to Adámek,

Rosický, and Trnková called Weak Vopěnka’s Principle WVP (cf. [1]) that has been stratified in a similar way

by the notions of Πn-strong cardinals by Bagaria and Wilson.
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Theorem 13 (Bagaria & Wilson; [5, §5]). WVP holds if and only if for every n, there is a Πn-strong cardinal.

Boney and the first author provided the following characterisation of Πn-strong cardinals in terms of weak

Henkin models of Ls,n, published in the first author’s Ph.D. thesis.

Theorem 14 (Boney & O.; [17, Theorem 2.3.6]). The following are equivalent for every n ≥ 2 and every

cardinal κ:

(1) κ is Πn-strong

(2) For every λ which is a limit of C(n) and every theory T ⊆ Ls,n
κω that can be written as an increasing

union T =
⋃

α<κ Tα of theories Tα that each have models of size ≥ κ, there is a weak Ls,n
κω -Henkin model

(M,A) of T such that M |= ZFC∗
n, |A| ≥ λ and Vλ ≺Σn M .

Theorems 13 & 14 together yield a characterisation of WVP in terms of weak Henkin models. One can

therefore jump between the stratifications of VP by C(n)-extendible cardinals, and of its weakening WVP by

Πn-strong cardinals, by switching between assuming the compactness principle about strong Henkin models

from Theorem 10, and the compactness principle about weak Henkin models from Theorem 14.

5 Superstrong Cardinals

We would like to close by showing how superstrong cardinals can be characterised via compactness properties

for weak Henkin models. To our best knowledge, this is the first known model-theoretic characterisation of

superstrong cardinals.

Theorem 15. The following are equivalent:

(1) κ is superstrong with target λ.

(2) For any theory T ⊆ L2
κω such that rk(T ) < κ + ω and that can be written as an increasing union

T =
⋃

α∈κ Tα of theories Tα which each have a model of rank < κ+ ω and of size ≥ κ, there is a weak

L2
κω-Henkin model (M,A) of T such that Vλ ⊆ M ⊆ Vλ+ω, M |= ZFC∗, |A| ≥ λ and M |= λ = ℶM

λ .

Proof. First assume (1) and suppose we have a setup as in (2). Then there is a function f with domain κ

such that f(α) |= Tα, rk(f(α)) < κ + ω and |f(α)| ≥ κ. Take an elementary embedding j : V → N such

that crit(j) = κ, j(κ) = λ and Vj(κ) ⊆ N . Consider the sequence (Tα : α < κ). Evaluating it via j leads

to a sequence j((Tα : α < κ)) = (T ∗
α : α < j(κ)) such that j“T ⊆ T ∗

κ . Notice that j“T is a copy of T . By

elementarity, in N , we have that j(f)(κ) |= T ∗
κ and so in particular, for every φ ∈ j“T , N |=“j(f)(κ) |= φ”.

Further, rk(j(f)(κ)) < j(κ) + ω = λ+ ω and thus j(f)(κ) ∈ V N
λ+ω. Then (M,A) = (V N

λ+ω, j(f)(κ)) gives our

desired Henkin model: Because Vλ ⊆ N , we have Vλ ⊆ V N
λ+ω ⊆ Vλ+ω. As ZFC proves that ZFC∗ holds in the

limit stages of the cumulative hierarchy, V N
λ+ω |= ZFC∗. Because V N

λ+ω and N agree on second-order satisfaction,

we have V N
λ+ω = M |=“A |= φ” for every φ ∈ j“T . By elementarity, N , and hence M believes that j(κ) = λ

is a ℶ-fixed point. Finally, note that λ is actually a (strong limit) cardinal as the target of a superstrong

embedding, and so because by elementarity N |= |j(f)(κ)| ≥ j(κ) = λ, that |j(f)(κ)| ≥ λ really holds in V .

And now assume (2). We show that κ is superstrong with target λ. By standard results (cf., e.g., [13, §26]),
if j : Vκ+1 → N is an elementary embedding such that crit(j) = κ, j(κ) = λ and Vj(κ) ⊆ N , and we derive an

extender by letting for a ∈ [λ]<ω and X ⊆ [κ]<ω,

X ∈ Ea iff a ∈ j(X),
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then the extender power of the universe witnesses that κ is superstrong with target λ. So it is sufficient to

derive an embedding as above. For this, consider the following theory:

T = ElDiagL2
κω
(Vκ+1,∈) ∪ {ci < c < cκ : i < κ},

where c is a new constant and the ci are the constants from the elementary diagram. Clearly, T can be

considered to have rank < κ+ ω and can be written as an increasing union of length κ of theories Tα for α < κ

by considering in Tα only those bits of the second part of T such that i < α. Then (Vκ+1,∈) gives a model of

Tα of size ≥ κ and of rank < κ+ ω. By (2), we get a transitive set M and A ∈ M such that M |=“A |= φ” for

every φ from (a copy of) T and such that Vλ ⊆ M ⊆ Vλ+ω, M |= ZFC∗, |A| ≥ λ and M |= λ = ℶM
λ . Because

T contains Magidor’s Φ, we have that A = V M
β for some β. By size of A and λ = ℶM

λ , we get β ≥ λ. Further,

by absoluteness of Lκω-satisfaction, in V we see that A |= ElDiagLκω
(Vκ+1,∈) and thus there is an elementary

embedding j : Vκ+1 → A = V M
β such that crit(j) = κ. Because A ∈ M ⊆ Vλ+ω, this implies β = λ+ 1 and

then clearly j(κ) = λ. Because Vλ ⊆ M , finally Vj(κ) = Vλ ⊆ V M
λ+1 = A.
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[11] V. Gitman & J. Osinski. Upward Löwenheim-Skolem-Tarski numbers for abstract logics. Annals of Pure

and Applied Logic, 2024.

[12] T. Jech. Set Theory. The Third Millennium Edition, revised and expanded. Corrected 4th printing. Springer

Monographs in Mathematics. Springer-Verlag, 2006.

[13] A. Kanamori. The Higher Infinite. 2nd edition. Springer Monographs in Mathematics. Springer-Verlag,

2003.

[14] M. Magidor. On the Role of Supercompact and Extendible Cardinals in Logic. Israel Journal of Mathematics,

10: 147–157, 1971.
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